In response to the allegations, Justin Comes, vice president of research and development at Mars Wrigley North America, told Health that safety is of paramount importance to Mars Wrigley. While we do not comment on pending litigation, all Mars Wrigley ingredients are safe and manufactured in compliance with strict quality and safety requirements established by food safety regulators, including the FDA.
Fluorine Chemical, Lithopone 30% CAS No. 1345-05-7, white powder, relative density: 4.136 ~ 4.39 g / mL, insoluble in water. It is a mixture of zinc sulfide and barium sulfate. Inorganic white pigment, widely used in plastics such as polyolefin, vinyl resin, ABS resin, polystyrene, polycarbonate, nylon and polyoxymethylene, and white pigments of paints and inks. It is less effective in polyurethane and amino resins and less suitable in fluoroplastics. It is also used for coloring of rubber products, paper, varnish, tarpaulin, leather, watercolor paint, paper, enamel, and the like. Used as a binder in the production of electric beads.
Testing samples were made mixing 100 uL of TiO2NPs suspensions (0.2 mg/mL and 0.02 mg/mL) and vitamins@P25TiO2NPs (0.2 mg/mL and 0.02 mg/mL) with 100 μL ATCC 29,213 methicillin-sensitive Staphylococcus aureus (MSSA) (107 in PBS, pH 7). Controls were made replacing nanoparticles with the same volume of PBS. The concentrations of nanoparticle suspensions were chosen based on the FDA approved maximal and the minimal amount usually found in sunscreens, which are 20% and 2% (this is equivalent to 0.2 mg/mL and 0.02 mg/mL for nanoparticles suspensions). The cream concentration, on the other hand, was an intermediate value of 10%.
Having thus described the origin and uses of the pigment, we now come to the question, what is lithopone? It is, in short, a chemical compound usually consisting of 30.5 per cent zinc sulphide, 1.5 per cent zinc oxide and 68 per cent barium sulphate, but these proportions vary slightly in the different makes. Lithopone of this composition is sold as the highest grade, either as red seal or green seal, as it best suits the idea of the manufacturer. Many manufacturers, especially in Europe, sell and also export other brands under other seals, containing 24, 20, 18 and as little as 12 per cent of zinc sulphide with very small percentages of zinc oxide, the balance being usually barium sulphate, but sometimes certain portions of China clay or gypsum (calcium sulphate) or whiting (calcium carbonate). Such brands are not a chemical compound, but mechanical mixtures of the chemically compounded lithopone and the admixtures referred to.
This constant high rate of ROS production leads rapidly to extreme macromolecular oxidation, here it is observed in the AOPP and MDA detected after 3 h in samples treated with bare P25TiO2NPs (Fig. 6, Fig. 7). Macromolecular oxidation includes, among others, both protein and lipid oxidation. The ROS causes protein oxidation by direct reaction or indirect reactions with secondary by-products of oxidative stress. Protein fragmentation or cross-linkages could be produced after the oxidation of amino acid side chains and protein backbones. These and later dityrosine-containing protein products formed during excessive production of oxidants are known as advanced oxidation protein products (AOPP). They absorb at 340 nm and are used to estimate the damage to structural cell amino acids. Lipid oxidation is detected by the conjugation of oxidized polyunsaturated lipids with thiobarbituric acid, forming a molecule that absorbs light at 532 nm. Polyunsaturated lipids are oxidized as a result of a free-radical-mediated chain of reactions. The most exposed targets are usually membrane lipids. The macromolecular damage could represent a deadly danger if it is too extensive, and this might be the case. Moreover, it could be observed that cellular damage continues further and becomes irrevocable after 6 h and MDA could not be detected. This may be due to the fact that the lipids were completely degraded and cells were no longer viable. Lipids from the cell membrane are the most prone to oxidation. In fact, lipid peroxidation biomarkers are used to screen the oxidative body balance [51]. At the same time, AOPP values are up to 30 times higher for bare nanoparticles in comparison to the functionalized ones.
The natural barite containing more than 95% of barium sulfate is mixed with anthracite in a ratio of 3:1 (mass), and is pulverized to a diameter of about 2 cm or less to enter a reduction furnace, and the front stage of the furnace temperature is controlled by 1000 to 1200 ° C, and the latter stage is 500 to 600 ° C, the reduction furnace rotates at a speed of 80s per revolution, the reaction conversion rate is 80% to 90%, the obtained barium sulfide enters the leaching device, the control temperature is above 65 ° C, and the content of barium sulfide is 701%, and then enters the clarification. The barrel is clarified and then added with zinc sulfate to control the zinc sulfate content to be greater than 28%, and the pH is 8-9, and a mixture of barium sulfate and zinc sulfide having a density of